

Digital Technology and Brain

Mehdi Tehrani-Doost, M.D.

Professor of Child and Adolescent Psychiatry &
Cognitive Neuroscience

Tehran University of Medical Sciences

Digital Technologies

- In recent years, the proliferation of **digital tools**, such as smartphones, social media platforms, and artificial intelligence technologies, started a significant paradigm shift in our **interaction with information**

Digital Technologies

- The impact of **digital tools on brain function** and cognition is a complex and interesting area of study that has prompted extensive research by researchers.
- There has been found several **cognitive areas** influenced by digital technologies

Attention

- The rapid rise of digital tools has brought about new challenges in maintaining **sustained focus** and have made it easier than ever to be constantly and perpetually **distracted**.
- Excessive smartphone use is associated with **poorer attentional control** (De-Sola Gutiérrez et al., 2016).

Attention

- The **constant notifications**, updates, and scrolling feeds can draw individuals' attention away from important tasks and create a state of perpetual **partial attention**.
- A study by Kross et al. (2013) revealed that passive use of Facebook predicted **decreased wellbeing** and **increased feelings of distraction** and **inattention**.

Attention

- One of the most significant challenges of digital tools is **attentional overload**.
- Attentional overload occurs when the demands of the environment **exceed the capacity** of an individual's attentional resources.
- The digital world presents a **wide range of stimuli**, all of which **compete** for an individual's attention
(Shanmugasundaram 2023)

Attention

- One factor that contributes to attentional overload is the huge volume of **information available**.
- Research shows that notifications and alerts from digital tools can **disrupt attention** and impair cognitive performance (Iqbal and Horvitz, 2007).
- An average person checks their phone at least **85 times per day** (Andrewsetal.,2015)

Attention

- The phenomenon of “continuous partial attention” is a symptom of attentional overload in the digital world (Stone, 2007).
- Continuous partial attention refers to the state of continuously **dividing and shifting** one’s attention across **multiple tasks** or stimuli and only **partially engaging** in any one of them.
- This practice can lead to a **superficial understanding** of information

Attention

- This can be characterized by the **constant urge** to stay connected and keep up with various sources of information, often driven by the “**fear of missing out**” or FOMO (Przybylskietal.,2013).
- **Continuous partial attention** is closely related to the influence of digital technologies (Oulasvirta et al., 2012).

Attention

- In addition to continuous partial attention, the digital world can also contribute to attentional overload through **multitasking**.
- Multitasking involves the **simultaneous** performance of two or more tasks, which can reduce the efficiency and accuracy of attentional processing (Rosen et al., 2013).

Attention

- **Heavy multi taskers** performed worse on a task that required sustained attention than those who were light multi taskers (Ophir et al., 2009).
- Children who used digital tools for more than **2h per day** had lower scores on cognitive tests than those who used them less (Firth et al., 2019).

Attention

- Moreover, the constant urge to stay connected and respond to notifications can lead to distracted real-life in person conversations and create a **diminished sense of presence** even in face-to-face interactions
- thereby making **difficult deep engagement** and empathy in interpersonal relationships (Turkle, 2011).

Attention

- One of the most significant factors is the **intentional design of digital devices** and platforms.
- Many digital devices and platforms are designed specifically **to be highly engaging**, using features such as notifications, alerts, personalized content, reminders and gamification to capture, retain and **maintain users' attention** (Dabbish et al., 2011).

Attention

- The reason for the link between technology use and attention problems is uncertain, but might be attributed to **repetitive attentional shifts and multitasking**, which can impair executive functioning (Nikkelen SW, 2014)
- Moreover, when people are constantly using their technology, they have fewer opportunities to interact offline and allow their brain to rest in its default mode (Greicius MD, 2003)

Attention

- A 2014 meta-analysis indicated a **correlation** between media use and attention problems (Anderson M, Jiang J. Teens 2018)
- A survey of adolescents without symptoms of ADHD at the start of the study indicated a significant association between more frequent use of digital media and symptoms of ADHD after **24 months of follow-up** (Ra CK, Cho J, 2018)
- This association has been identified in people at any age (Schou Andreassen C, 2016)

Attention

- A reciprocal relationship, with higher digital media use predicting increased **ADHD symptoms**,
- and higher ADHD symptoms predicting increased digital has also been reported (Sibley and Coxe, 2018; Adelantado Renau et al., 2019)
- suggesting that **excessive digital media use** and **ADHD symptoms** may **reinforce** each other in a complex manner.
- Correlations have also been observed between screen media use and ADHD symptoms in children and adolescents (Ra et al., 2020).

Attention

- Cain et al.(2016) reported an association between increased media multitasking and poorer **working memory** performance and lower academic outcomes.
- In addition, college students with increased levels of Facebook usage demonstrated worse outcomes on cognitive tasks such as **free recall activities** (Frein et al., 2013).

Attention

- Although video games **can improve** certain aspects of attention, such as selective attention and visual-spatial processing,
- **excessive use** may also lead to **attentional difficulties**, such as reduced sustained attention and increased distractibility, particularly in children (Bavelier et al., 2010).

Decision-making

- Increasing internet usage has led to more informed decision making due to a broader range of accessible data.
- However, the **overwhelming volume of information** available can lead to information overload, complicating the decision-making process and potentially causing decision paralysis (Eppler and Mengis, 2004).

Decision-making

- In one study, participants who spent more time on social networking sites showed a **higher level of cognitive overload**, leading to a **decrease in** their ability to make **decisions** (Junco and Cotten, 2012).
- This finding highlights the importance of limiting digital use to avoid cognitive overload, which can impair decision making skills.

Decision-making

- **Digital distractions** are another aspect of technology that can impact decision making.
- **Continuous digital distractions** might reduce the cognitive capacity for careful deliberation, leading to more impulsive decisions (Duke and Montag, 2017).
- Participants who were interrupted by a text message while performing a decision-making task showed a decrease in the quality of their decisions, (Mark et al., 2017)

Decision-making

- In addition, digital use can lead to a decrease in **critical thinking** skills, which can further impair decision-making abilities.
- Participants who were exposed to social media posts with misleading information showed **a decrease** in their ability to critically evaluate the information presented, leading to **impaired decision-making** skills (Aïmeur et al., 2023).

Decision-making

- Smartphone addiction has been associated with reduced activity in the **prefrontal cortex**, which is responsible for **decision-making** and impulse control (Lin et al., 2015).
- Internet addiction was associated with reduced **gray matter** density in the brain's **frontal cortex** (Chen et al., 2023).

Impaired emotional and social intelligence

Impaired emotional and social intelligence

- Kirsh and Mounts (2007) explored the hypothesis that playing videogames would interfere with the ability to **recognize emotions** conveyed through facial expressions.
- They examined the effects of playing videogames on recognition of facial expressions of emotions in 197 students (ages 17 to 23 years).

Impaired emotional and social intelligence

- Participants played violent videogames before watching a series of faces expressing either **angry or happy faces**.
- Then participants were asked to quickly **identify the emotion** while the facial expression changed.
- The authors found that **happy faces** were identified **faster** than angry faces,
- and that playing violent videogames **delayed happy face recognition time** (Kirsh and Mounts, 2007) .

Impaired emotional and social intelligence

- Internet addiction is associated with **decreased empathy**, which is an important component of social cognition (Tao et al., 2010).
- Excessive use of social networking sites is associated with **decreased social skills** and a decreased ability to **recognize facial emotions** (Błachnio et al., 2016).

Impaired emotional and social intelligence

- Individuals who frequently engage in media multitasking have **reduced gray matter** density in the **anterior cingulate cortex**,
- a brain region associated with **cognitive and emotional regulation** (Loh and Kanai, 2014).
- Participants who reported using Facebook more frequently also had **lower gray matter density** in the **anterior cingulate cortex**, (Kanai et al., 2012).

Impaired emotional and social intelligence

- Neuroimaging have shown that individuals with problematic internet use exhibit structural and functional changes in the **prefrontal cortex** (PFC) and the **anterior cingulate cortex** (ACC).
- These areas of the brain are critical for higher cognitive functions such as **decision-making**,
- **impulse control**, and **emotion regulation**

Impaired emotional and social intelligence

- a study found that heavy social media use was associated with decreased gray matter volume in the **amygdala**, a brain region involved in emotion regulation (Montag et al., 2017).
- Another study found that participants who were **heavy users** of video games had **smaller gray matter volume** in the **hippocampus**,
- a brain region involved in **emotional memory** (Kühn and Gallinat, 2014).

Impaired emotional and social intelligence

- People with internet addiction show **impairment of white matter fibers** in the brain connecting regions involved in **generations of emotions and cognitive control as well** (Zhou et al., 2011).
- Furthermore, frequent exposure to emotionally arousing content, such as social media posts or online news, can **disrupt emotional regulation processes**
- and contribute to **heightened stress**, anxiety, and depressive symptoms.

Impaired emotional and social intelligence

- Excessive social media use is associated with increased emotional reactivity and decreased emotional recovery,
- indicating difficulties in regulating emotional responses (Puukko et al., 2020).

Neural responses to online social rejection

- Using functional MRI (fMRI), researchers have observed **increased activity** in the **orbitofrontal cortex** and **insula** after participants experienced **exclusion**, possibly signaling increased **arousal** and **negative affect** (Cacioppo, S. et al. 2013)
- whereas spending more time with friends **reduced ACC response** in adolescents to social exclusion (*Masten, C. L., 2012*)

Neural responses to online social rejection

- Neuroimaging studies revealed that, being **rejected** resulted in increased activity in the **medial frontal cortex**, in both adults (*Achterberg, M., 2016*)
- and children (*Achterberg, M. et al. 2017*)
- the studies suggest that adolescents show **stronger rejection expectation** than adults,
- and **ACC** and **medial frontal cortex** are critically involved when processing online exclusion or **rejection**.

Neural responses to online social acceptance

- Likewise, being **socially accepted** through likes in the chat room task resulted in increased activity in the **ventral striatum** in children (*Achterberg, M. et al. 2017*),
- adolescents (*Gunther Moor, B., 2010*)
- and adults (*Achterberg, M., 2016*)

Neural responses to online social acceptance

- This response is **blunted** in adolescents who experience **depression** (*Silk, J. S. et al. 2014*)
- or who have experienced a history of **maternal negative affect** (*Tan, P. Z. et al. 2014*)

Neural responses to online social acceptance

- In a controlled experimental study, adolescents showed more activity in the **ventral striatum** when viewing images with **many vs. few likes**,
- and this activation was stronger for **older adolescents** and college students compared to younger adolescents *(Sherman, L. E. 2017)*

Impaired emotional and social intelligence

- Spending extensive periods of time with digital media translates to spending **less time communicating face to face**
- The American Academy of Pediatrics has recommended that parents limit screen time for **children aged 2 years or younger**, when the brain is particularly malleable (American Academy of Pediatrics 2001)

Adverse impact on cognitive and brain development

Adverse impact on cognitive and brain development

- Increased screen time (and less reading time) has been associated with poorer language development and executive functioning, particularly in very young children (Horowitz-Kraus T, 2018)
- as well as poorer language development in a large cohort of minority children (Duch H, 2013)
- In infants, increased screen time was one of several factors that predicted behavioral problems (McDonald SW, 2018)

Adverse impact on cognitive and brain development

- For infants 6 to 12 months, increased screen time was linked to poorer early **language development** (Tomopoulos S, 2010)
- In children of preschool age and older, digital media directed toward active learning **can be educational**, but only when accompanied by **parental interaction** (Radesky JS, 2016)

Adverse impact on cognitive and brain development

- In a study of children aged 8 to 12 years, more screen and less reading time were associated with decreased brain **connectivity** between regions controlling **word recognition** and both **language** and **cognitive control** (Horowitz-Kraus T, 2018)

Adverse impact on cognitive and brain development

- Structurally, increased screen time relates to decreased integrity of **white-matter pathways** necessary for **reading and language** (Hutton JS, 2019)
- A recent review on brain development simply noted that DM's effects can be both **positive** and **negative** (Wu, D., 2023).

Impact on cognitive and brain development

- This inconsistency in findings can be attributed to several factors:
- First, the general term '**digital media**' encompasses a wide range of activities,
- Therefore, it is crucial to differentiate between **various digital activities** (Nivins, 2024)

Impact on cognitive and brain development

- the **age of the participants** is a significant factor.
- For example, research by Orben et al. in 2022 showed that social media use could negatively affect psychological well-being during particular developmental stages (Orben, A., 2022).

Impact on cognitive and brain development

- In another study, Soares et al. found that **boys** who spent more time watching television or playing video games **at 11 years old**,
- and more time using computers at 11 and 15 years old, showed **improved working memory** performance at 22 years old (Soares, P. S. M., 2021).
- However, this association was not observed in girls

Impact on cognitive and brain development

- Third, is the conflation of evidence from **cross-sectional** and **longitudinal** studies in reviews.
- **Cross-sectional** studies can identify correlations but **cannot** establish **causality**.
- Whereas **longitudinal** studies may even yield opposite results.
- For example, a longitudinal study found a **negative correlation** between time spent playing **video games** and **intelligence** (Sauce, B., 2022).

Impact on cognitive and brain development

- However, when controlling for **baseline cognition** and other background variables, the longitudinal analysis revealed that playing video games **positively influenced changes in intelligence**.

Impact on cognitive and brain development

- In one cross-sectional study of healthy children ages 8–12, time spent reading was **positively** correlated with higher **functional connectivity** between the Brodmann Area 37 and left-sided language, visual, and cognitive control regions,
- but **screen time** was related to **lower connectivity** between the left visual word form area and regions related to language and cognitive control (Horowitz-Kraus and Hutton, 2017).

Impact on cognitive and brain development

- In one study to find the relationship between Social Media Activity (SMA) and brain structures (the Adolescent Brain Cognitive Development Study)
- there was **little evidence** that SMA contributes to brain structure characteristics that can be related to **internalizing behaviors** (Paulus et al 2019)

Impact on cognitive and brain development

- However, the authors found a strong relationship to **externalizing psychopathology**.
- Thinner **occipital** cortices and smaller volume in **orbitofrontal** areas as well as **thinner hippocampi** and smaller inferior-temporal cortical volumes, showed **greater levels of externalizing psychopathology** (Paulus et al 2019)

Impact on cognitive and brain development

- In 2023, Miller et al. assessed the impact of **Digital Media** on functional connectivity over 2 years in a cohort of over 4000 children (Miller 2023).
- They reported no effects exceeding a size of 0.2, the predetermined threshold for significance.

Impact on cognitive and brain development

- In a large prospective cohort study, Nivins (2024) studied the long-term effects of DM usage on the development of the cortex, striatum, and cerebellum **across three time points** in children aged 9 to 11 years (Nivins 2024).
- Despite the initial hypothesis, they found that DM usage **did not significantly alter** the development of the **global cortical surface area or striatum volume**

Impact on cognitive and brain development

- However, children who devote more time to playing video games had a **weak increase in cerebellum** volume during the critical developmental window of development
- while those who spent more time using **social media** had a subtle **decrease in cerebellum volume** (Nivins 2024).

Impact on cognitive and brain development

- The **cerebellum** is a core component of the neural circuitry underpinning many cognitive deficits including
- **working memory**, response inhibition, **attention shifting**, and **processing of rewards** and temporal information (Durston 2011; noreika 2013).

Impact on cognitive and brain development

- The cerebellum is **sensitive to environmental** exposures both prenatally, as demonstrated by studies of maternal alcohol, maternal diabetes, hypoxia, and postnatal glucocorticoid exposure (Nivins 2023),
- and postnatally (Cavanagh, J. et al. 2013)

Impact on cognitive and brain development

- In conclusion Nirvins (2024) found that individual DM usage did not alter the development of cortex or striatum volumes.
- However, high social media usage was associated with a statistically significant change in the **developmental trajectory of cerebellum volumes** (Nivins 2024)

Technology Addiction

Technology Addiction

- Internet addiction has been associated with reduced attention span and working memory as well as impaired decision-making, specifically in the area of risk assessment (Dong et al., 2013).
- Smartphone addiction is associated with decreased cognitive function (Lee et al., 2017)
- and deficits in attention and executive function such as inhibition and working memory (Lin et al., 2015).

Technology Addiction

- Addictive behaviors have been tied to changes in the brain's reward system.
- The brain's reward system plays a crucial role in regulating motivation, decision-making, and self-control.
- Digital technology, can hijack this reward system, leading to potential challenges in self-control and psychological regulation.

Technology Addiction

- Research has shown that excessive digital use, particularly related to activities such as social media and gaming, can **trigger addictive behaviors** by activating the brain's reward circuitry.
- This activation is mediated by the release of **dopamine**, a neurotransmitter associated with pleasure and reward (Báez-Mendoza and Schultz, 2013).

Technology Addiction

- Excessive online gaming has been linked to increased activation of the **reward system**, (Kuss et al., 2014).
- Studies have demonstrated that heavy digital media use is associated with **lower levels of reward self-control**.

Technology Addiction

- Individuals who frequently engage in media multitasking exhibited **reduced reward self-control**,
- leading to impulsive decision-making and decreased academic performance (Wilmer et al., 2017).

Technology Addiction

- Adolescents with internet addiction exhibited **decreased gray matter** density in several brain areas, including the **dorsolateral prefrontal cortex** (DLPFC) and the **rostral ACC** (Yuan et al., 2011).
- The DLPFC is implicated in executive functions such as decision making and cognitive control, whereas the ACC is involved in emotion processing and regulation

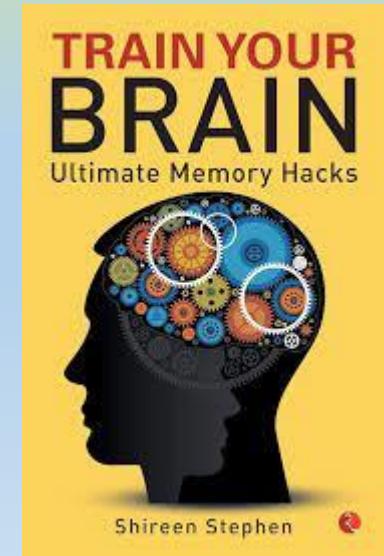
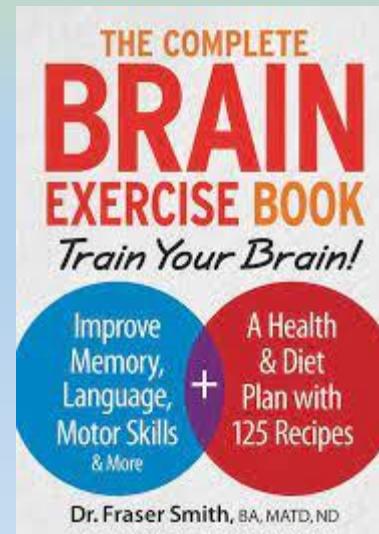
Technology Addiction

- In one study with 18 year-old college students, individuals with internet gaming addiction showed **less gray matter volume in bilateral anterior cingulate cortex, precuneus, supplementary motor area, superior parietal cortex,**
- left **dorsal lateral prefrontal cortex, left insula,**
- and bilateral **cerebellum** than matched controls (Wang et al., 2015).

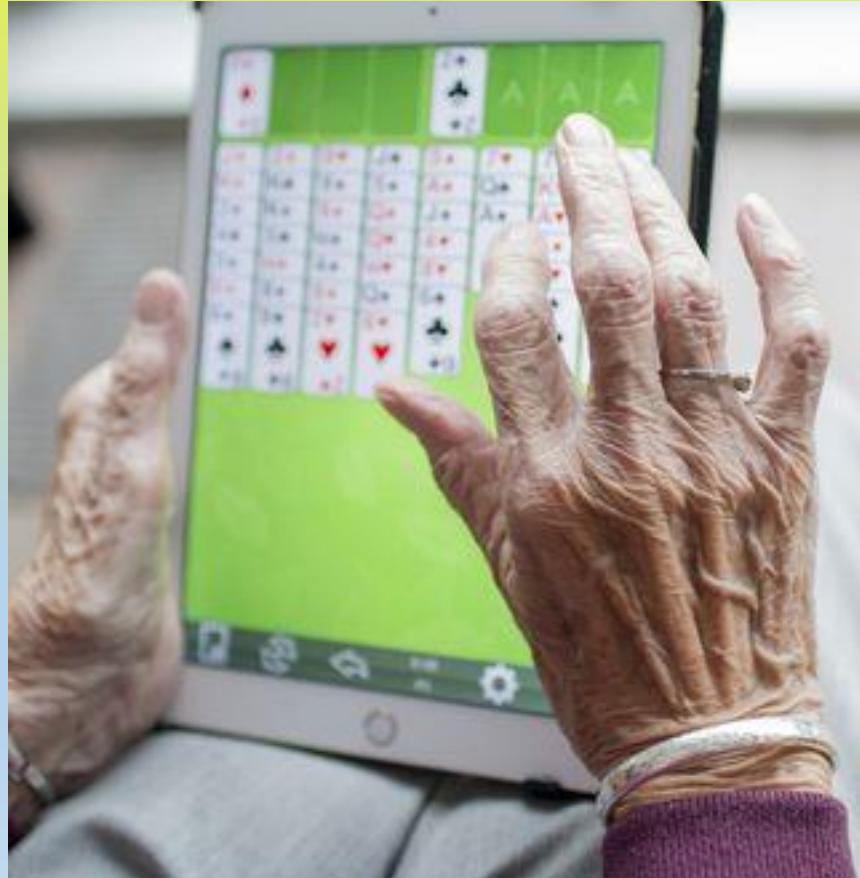
Technology Addiction

- Among young adult female habitual internet users, **more gray matter** volume of bilateral putamen and right nucleus accumbens **(subcortical)**
- and **lower gray matter** volume of orbitofrontal cortex **(cortical)** were associated with **more frequent use** (Altbacker et al., 2016).

Technology Addiction



- Apart from structural and functional changes, alterations in the **functional connectivity** between these brain regions have also been observed.
- Individuals with internet gaming addiction showed altered resting-state functional connectivity between several regions, including the **ACC and the PFC** which is implicated in cognitive control and emotional regulation (Hong et al., 2013).

Brain-health benefits of digital technology



Brain-health benefits of digital technology

- Despite these potential harmful brain-health effects of digital technology, emerging evidence points to **several benefits for the aging brain** in particular,

- including opportunities for brain-strengthening neural exercise, cognitive training,
- and the online delivery of mental-health interventions and support (Small, 2020).

STRATEGIES	BRAIN-HEALTH PROMOTING TARGETS
Online searching	Neural activation of circuits controlling decision-making and complex reasoning
Cognitive training games	Global cognition, memory (immediate, delayed, and working), attention, learning abilities
Racecar videogames with distracting road signs	Multitasking skills
N-back task training games	Working memory, fluid intelligence
Action videogames	Visual attention, reaction time, task-switching abilities
Monitoring apps	Heart rate, breathing patterns
Psychotherapy, educational apps	Mood, sleep, social support

Table I. Health-promoting digital technology strategies for the aging brain.

Thank You for Your Attention

